

In the following will be given a description＇of the Enigma， then a case will be described where one succeeded in deciphering a message enoipnered by the Enigmas and determining the wiring of the machine．In describing the Enigma use will be made of the concept of substitutions and an attempt made to present this concept to non－ mathematicians，for what is said about substitutions and their com－ position might be of use in other decipherments，especially in treating other machines．

I．Description of the Enigma

1．The oipher wheels

The cipher wheels constitute the ohier part of the Enigma and gre constructed as follows：on each side of a sound dist of insu－ fating material are arranged in a erie 26 contacts；on one eide there are metal discs，on the other side metal spring contact pins． Each contact on one side is connected by wiring through the disc with ${ }^{2} \Rightarrow$
：ai contact on the other side．The choice of the contacts to be con－ heated is termed the wiring（schaltumg）of the wheel．To designate thejwiring the oontaots of the two rings of contacts are assigned numbers 1－26（progressing clock vise when one looks at the side with the signing contacts），contacts standing opposite each other having the same number．The vising may then be expressed as follows：

In the upper inge are the numbers of the contact pins，in the lower those of the flush contacts paired with them．Pin 1 is here con－ noted 烈o flush contact 21，pin 2 with flush contact 21，．．．pin 26 with＇flush contact 7 ．We treat W ，as usual，as a substitution，ie． as an operation which replaces number 2 by number 21,2 by 21，etc．
2. Ite wiring of a sequence of two wheels

Pig. I shows in schematic form two wieels A and B which are so mounled ticet the pins of wheel B contact ire like numbered rlus. contacts of w.eel A. These wleels nave 6 ratier than 26 contacts; for simplicity we siall ase 6 ratier th an 26 contacts in our exanples since every w ing essential will be revealed as well. The substitutions produced by the two weels are

$$
A=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 1 & 6 & 5 & 2 & 4
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 1 & 3 & 6 & 2 & 5
\end{array}\right)
$$

One sees that win mounted together thes produce the substitution

$$
P=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 4 & 5 & 2 & 1 & 6
\end{array}\right)
$$

Pownutalion P is termed the produot of A and B : $P=A \cdot B$. Tre product $A \cdot B$ is conjuted from A and B as follows: Any number is transposed aocording to substitution A_{s}, then the result is tremaposed again socording to B. In our seraple in A mumber 1 is replaced by 3 and in $B 3$ is ieft undanged, 1.e. P replaces 1 by 3,2 is clanged to 1 by sulatitution A and B olianges 1 to 4 , hence in the product $A B$ 2 changes to 4, elo. Haturaliy it is universally twie that viven two Wheels are mounted together the produot of tue peztinent substitutions is generated.
ree speaks of a product in the formation of AB because certain properties kold for tais calculation which are familar from ondinary multiplioation of mumbers. One can, for instance, add after A and B a third whec 0 with 8 subatitution we will call 0 . The substitur tion generated by the three wheels can be calculated by regarding wheels A and B together as nev wheel F and thus getting the resultant wiring of F and C. The pertinent substitution is $F C=(A B) C$. But one can also take B and C together as G and then has $A G=A(B C)$.

In both cases one has the same substitution: $A(B C)=(A B) C$. We can now shorien our expression to ABC. In like manner the products of more than three factors can be defined. The law involved in the equation $(A B) C=A(B C)$ is called the esaociative law. This law, namely that in maltiplying one may eroup the factors in any order, is well known froin tale formation of producta of ordinary numbers, Jne law for the products of numbers does not hold for the multiplicstion of substitutions. In general $A B$ is different from $B A$ (this is also true in our exanple). Hence in our product everything depends on the sequence of the fectors. Two substitutions A and B for whion the equation $A B=B A$ holds good are termed commutative.

Thus far is our discussion of the wirings we have stavted with the oontact pins and oonsidered the connections to the flush oontacts, 1.e. we haveso to speak been Funning through the ogilnder in the alreotion from the pins to the flat contacts. We can now choose the othar direction. The aubstitution which tne cylinder with wining K yielde ve will designate $W^{\mathbf{- 1}}$. One derives W^{-1} from W, as is reedily seen, by transposing the lines and then rearranging the numbers of the new up, er line in their normal sequence. One reoognizes at once that

$$
W W^{-1}=W^{-1} W=E=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 2 & 3 & 4 & 5 & 6
\end{array}: . . \begin{array}{ll}
25 & 26 \\
26
\end{array}\right)
$$

The substitution E, which converts each number into itself, is termed the identity substitution. Substitution W^{-1} is temed inverse to W. In our example
$A^{-1}=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 1 & 6 & 4 & 3\end{array}\right) \quad$ and $A^{-1} A=A A^{-1}=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6\end{array}\right)$ one oan readily verify the rule $(A B)^{-1}=B^{-1} A^{-1}$.

3. The turning of a wheel

Let theel A be mounted between two dises S_{1} and S_{2} so that it can revolve. Let dises g_{1} and g_{2} each have a efrcle of 6 contects sorpesponding to those of A. Let these contacts be numbered $1-6$ in such fashion that like numbered contacts of S_{1} and g_{2} are opposite each other. If A is placed so that each contact pin of A touches the correspondingiy mumered contact of s_{1} (and consequentiy fiush contacts of A accord in mumber with contacts of S_{2}) then the contacts of S_{1} and g_{2} are connected thzough wheel A according to the substitution of wheel A; i.e. if one interpsets the upper Ine in

$$
A=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 1 & 6 & 5 & 2 & 4
\end{array}\right)
$$

as the mumbers of the comtacta of S_{1} and the lowes IIne as the mumbers of the contacts of S_{2}, then the vertical pairs represent the contacts connectad with one another.

If one twins wheel A $1 / 6$ of a complete sevolution so that now contant 2 of A touches I of g_{2} and s_{2} etc. , the contacts of s_{1} and S_{2} are now connected according to the substitution

$$
Q=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
6 & 5 & 4 & 1 & 3 & 2
\end{array}\right)
$$

$A s$ one easily figures out, $Q=\& A Z^{-1}$ where Z meens the substitu$\operatorname{tion}\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 1\end{array}\right)$, 1.e. that permutation where each temm is meplaced by the next higher and the last by 1 . Accosding to 2.s

$$
z^{-1}=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
6 & 1 & 2 & 3 & 4 & 5
\end{array}\right)
$$

One calls Z a cyclic substitution and writes also $z=(123456)$.
The rule confirmed for our case holds good generally only that in the case of 26 contacts we write $Z=(123 \ldots 2526)$. For is the substitution of the wheel is $\left(\frac{1}{1}\right)$ where $(1,1 *=1,2, \ldots, 26)$, then in the initial position contact 1 of S_{1} is connected with contact $1 *$ of S_{2}; and after $1 / 26$ mevolution contact 1 of S_{1} is comected
with $(1+1) *=1$ of s_{2}; that however moans that after the motion we have the subatitution $\mathrm{z}\left(\frac{1}{2} \mathrm{~N}_{\mathrm{N}}\right) \mathrm{z}^{-1}$. If one turns another $1 / 26$ of
 In general after k turns one gets $z^{k}\left(f^{*}\right) z^{-k}$ where 7^{k} signifies a product of k factors z and $z^{-k}=\left(z^{k}\right)^{-1}$. It is easy to see thet $z^{26} \equiv$ I.

4. The reveraing wheel

A further unit of the Bnigms is the so-cblled reversing wheel (Dmkehwalze). It is similar to the cipher wheels in construction but has only one set of contscts. These contect pins are wired up two by two through the interios of the wheel. This whee] also can be assigned a substitution by writing the mumbers of the pins in the upper line and in the lower line beneath each one the number to whieh it is wired. If below 1 of the upier line we find k, obviousiy below k we mast find 1 , sinoe the two are connected. From this it. follows that: if U is the substitution associated with the reversing wheels $U=\boldsymbol{J}^{-1}$, therefore $\boldsymbol{U}^{2}=\mathrm{E}$.
5. The operation of the Enigma

In the Inigaa there are three cipher wheels A, B, C and a reveraing wheel U one alongside the other (of. figure 3). These turn on an axle. On the diec s are 26 contacts which are connected to a keyboard 2ike that of a typewiter and also to 26 lamps. The keys are marked with the 26 letters of the alphabet and each lamp lights to a letter on a glass plate.

If one depresses a key, say x, current enters through the corperponding contact of the end plate S into the maze of wheels. It traverses these in the order $A \rightarrow B \rightarrow C \rightarrow X \rightarrow C \rightarrow B \rightarrow A$ and comes
out at some defiaite contact of S. The lamp vired to this contact iights up soms letter, say y. Conversely if one presses key y the letter x lights up. In other words a reciprocel T_{26} (26 letter substitution alphabet) is produced.

After what has alveady been said it is not hard to compute the substitutions corresponding to this $\mathrm{T}_{2} 6$, 1.e. that substitution vhich shours how the contacts of s (end plate) ere connected through the cipher wheels and reversing wneel. If $A, B_{p} C$, and U stand in the basic position, 1.e. so that sil contacts touch 21 ke numbers, the corresponding substitution 1ss

$$
P=A B \subset D C^{-1} \mathrm{~B}^{-1} \mathrm{~A}^{-1}
$$

If one wheel is advanced one Btep, 1.0 , so that contact 2 of A touches contact 1 of s and B, then according to (3) the substitution A is repleced by $z_{A^{-1}}$; aimilamy when other wheels move.

Now if one moves wheels A, B, and C by $\frac{k}{26}, \frac{1}{26}$, and $\frac{m}{26}$ of a full revolution, one gets the substitution $P_{k_{s}, 1, I I}=\left(z^{k} A Z^{-k}\right)\left(z_{B Z^{1}}^{-1}\right)\left(z^{m} C Z^{-m}\right) v\left(z^{m} C^{-1} z^{-m}\right)\left(z^{1} B^{-1} z^{-1}\right)\left(z^{k} A^{-1} z^{-k}\right)$. To abbreviate we weite $P_{k, l, m}=(k, 1, m)$ and note that by z° we understand the 1dentity permutation E.

Thus there exists a one-to-one correspondence between the hitherto considered substituilions of the numbers 1 - 26 and the I_{26}. The associaition of the nwmbers with the letters depends on the connection of the contacts of S with the legs and lemps. In the nsual comeroial form of the Enigma the numbers 1, 2, ..., 25, 26 of the series are associated with the letters qwextauioasdfgh jkpyxcvinni. This sequence comes from the arrangement of the keys on a typewriter. The Inigma ve voriked on had a like arrangement, however one could readily have determined any other.

A drive mechanism coupled with the keys of tne Finigma causes wheel A to move forward $1 / 26$ of a revolution each time a key 18 depressed and theels B and C to move in a fixed manner. Sterting with $[0,0,0]$ the machine generates successively the following substitution alphabets: *

$\mathrm{P}_{1} \quad[0,0,0]$	$P_{651}=[0,0,1]$	${ }^{1} 1301$	$[0,0,2]$	-
$P_{2}=[1,0,0]$	$P_{652}=[1,0,1]$			
$\mathrm{P}_{25}{ }^{\cdots} \cdot \cdots[24,0,0]$	-			
$P_{26}=[25,1,0]$,			
$\mathrm{P}_{27}=[0,2,0]$	$P_{677}=[0,2,2]$			-
$\mathrm{P}_{648} \times \ldots \times[2 \dot{3} ; \dot{2} 4,0]$!			
$\mathrm{P}_{649}=[24,24,0]$	$\mathrm{P}_{1299}=[24,24,1]$			
$P_{650}=[25,25,0]$	$\mathrm{P}_{2300}=[25,25,1]$	P_{1950}	$[25,25,2]$	

*	$\begin{aligned} & P_{15602}=[0,0,24] \\ & \mathbf{P}_{15602}=[1,0,24] \end{aligned}$	$\begin{aligned} & p_{16251} \\ & P_{16252} \end{aligned}$
-	-	
-	-	
- .	-	
-	$\mathrm{P}_{16249} \pm[24,24,24]$	${ }^{1} 16899$
-	$P_{16250}=[25,25,24]$	P_{16900}

These permutations repeat themselves periodically from here on, i.e. $P_{16901}=P_{1}, P_{16902}=P_{2}, \ldots$.

Note: Observe that

1) wheel A canses wheel B to move between positions 24 and 25,
2) wheel B nommally causes wheel 0 to move between 25 and 0 , and
3) the motion of any wheel effects the simultaneous motion of all wheels to its left (in our scheme).

kncipherment with the Enigma proooeds by striking suocessively the keys corresponding to the plain text levters and oopying off the oorresponding oipher text letters revealed by the lamps. The first plain text letter will therefore be enciphered with the T_{26} pertaining to P_{1}, the seoond with that pertaining to P_{2}, eto. sinoe the substitutions P_{n} and hence the T_{26} ape reciprocal, decipherment proceeds in like manner, typing the cipher text and reading off the plain text. of course oncipherment and decipherment must both be made with the same original setting.

Each of the four wheels of the Fingme has around its edge a ring vith the 26 letters of the alphabet. These rings serve to establiah the setting of the wheels. This setting of the machine, indioated by Poun letters, is termed the "outer setting." For this outer setting one has 26^{4} possibilities.

These letter rings are so attached to the real cipher discs lhat they oan be rotated. The notahes in witioh the drive meahentam engeges are fivmily united uith the letter rings. For the setting of the letter rings with respect to the cipher wheel proper there are also 26^{4} possibilities; esoh suoh setting is likewise indioated by a group of Pour letters. This is known as the "inner setting."

A further posaibility of vapiation of the machine exists in the six possible ampangements of the three wheel.s A, B, and C.

Finally ve may point out that in the Enigme the wheels are arranged in reverse order of Ifgure 3, 1.e. the diso s (end plate) is at the might and the reversing wheel at the left. of courae what has been said holds good for this sequence. Our figupe is dram to accord as far as possible with the text.

> Ir. Determining the wiring of an Enigma from a sequence of T_{26} (substitution aiphabets) 1. Cryptanalytic foundation

These was at hand a considerable number of messages which had thoughtlessly been enciphered with the same inner and outer initisl setting. Hence it was possible by superimposing the telegrams to solve the individual ${ }^{2} 26^{1 s}$ (substitution alphabets) column by colum, in doing wish one could also make use of the fact that these $\mathrm{T}_{26}{ }^{\prime} \mathrm{s}$ mast be reciprocal. In this way one obtained a series of $50-150$ successive $T^{2} 6^{\prime} s$, some of them with gaps. For each of these sequences the outer setting was known and for part of them the inner setting was also known, as well as the wheel order in the original macinine. There was also a surnise as to the wiring of tue reversing wheel \mathbb{U} wilich eventually proved to be corwect. However, even without this guess, the wiring of \bar{y} could have been figused out mathematicaliy.
2. Theoretical calculation of the wheel wiring

To present first the principle involved in calculating the wirings A, B, C, and U, we consider as given a sufficientiy lang series F of successive $T_{26}{ }^{\prime} s$ produced by the machine. The $\mathrm{T}_{26}{ }^{\prime} / \mathrm{s}$ or the substitutions of thin sequence we designate $P_{1}, P_{2}, \ldots .$. vithout limiting generality, we can assume that P_{1} is the first permutation after a simultaneous movement of wheels B and C; since our sequence P was presumed to be of adequate length, such a substitution surely occura therein and in what follows we might exemine onily tie portion beginning tnere. With the mumbering of the contacts assigned in I, it was purely arbitrary which contact was assigned the number 1. Still making use of this liberty, we

may furtaer essume that $P_{1}=[0,0,0]$. This brings our notation into hermony witu I 5. Accordingly

$$
\begin{aligned}
& P_{1}=A\left(B C U C^{-1} B^{-1}\right) A^{-1} \\
& P_{2}=Z A Z^{-1}\left(B C E C^{-1} B^{-1}\right) Z A^{-1} Z^{-1}
\end{aligned}
$$

One sees that the central term in parentresis is the amme in both equations, which is clean since in passing from P_{1} to P_{2} only wheel A advanced one step. In.e fact that in passing from P_{1} to P_{2} only wieel A is involved (and tilis in a lmown manner), makes it oonprenemsible that one can deduce from P_{1} and P_{2} together certain propertiea of wheel A. It appears that by adding a few mope paivs of successive substitutions it is even possible to oalculate A aimost completely. Once A is lnown, one can form from F a new sequence G waich is no longer dependent in any way on A, Viz.:

$$
\begin{aligned}
& Q_{1}=A^{-1} P_{1} A=B\left(O U C^{-1}\right) B^{-1} \\
& Q_{27}=A^{-1} P_{27^{A}}=Z B Z^{-1}\left(C O C^{-1}\right) Z B^{-1} Z^{-1} \\
& Q_{651}=A^{-1} P_{651} A=B\left(Z O Z^{-1} U_{U Z^{-1}} 1_{Z}-1\right) B^{-1} \\
& Q_{677}=A^{-1} P_{P_{77}} A=Z B Z^{-1}\left(Z O Z^{-1} U Z O^{-1} Z^{-1}\right) Z B^{-1} Z^{-1}
\end{aligned}
$$

This sequence can be used in corresponding fashion to calculate B. Using a third sequenoe, which is not dependent on B, C is figured, and finally U.

Carrying out these calculations in detail calls for a certain amount of practice in using the symbols here introduced. Moreover, since too full a description would make it difficult to take in quickly, we will assume down to the end of this section 2 some faniliarity with substitutions and express ourselves somewhist more briefly in presenting our calculations.

$$
\text { Witis } x=A Z A^{-1} Z^{-1} \text { ve get } x^{-1} P_{1} X=P_{2}
$$ Weth this equation X is determined except for a leftnand factor whicin is commutative witn P_{1}; i.e., if

$\bar{X}^{-1} P_{1} \bar{X}=P_{2} \quad$ and one assumes $\quad \bar{X}=K X \quad$ then $X^{-1} P_{1} \bar{X}=X^{-1} K^{-1} P_{1} K X=X^{-1} P_{1} X$, therefore $X^{-1} P_{P_{1} K}=P_{1}$, i.e., $K P_{1}=P_{1} K$. IAkewise we have the equation $x^{-1} P_{27} X=P_{28}$.
By tais equation X is determined except for a lefthand fector which is conrantative witn P_{27}. The two equations $X^{-1} P_{1} X=P_{2}$ and
 commutative witil beti P_{1} and P_{27}. How if there is a set in of substitutions, P_{m} with $m=26 \mathrm{~m}-1$, sual that the identity is the oniy subatitution commutative with ail P_{m}, then by the equation

$$
X^{-1} p_{P_{m}} X=P_{m+1},
$$

where P_{m} runs through all the substitutions of M, X is uniquely determined.

Ihis case has occurred in all exempies which have actually come up. Tiie set M consisted of from three to five aubstitutions.

If X is determined one gets from $X=A Z A^{-1} Z^{-1}$

$$
X Z=A Z A^{-1} .
$$

This equation determines A except for a power of z as a righthand factor, since a cyele is commatative oniy with its powers.

A cannot be cetermined maxe exactly by sequence F alone, for with every choice of A among the 26 possibilities B, C, and U can be sc determined as to generate sequence F. That A cannct be thus determined uniquely is clear; conceive of the wheels as constructed of plisble material, then one could, for example, twist the two sides of wieel A with respect tc one ancther; a like

twisting of wheel B vould compensate for this, however. Such a twisting vould exsctly cowrespond to the replacement of A by $A Z^{p}$.

For the following ve seleat as A one solution from among those possible for $\mathrm{XZ}=\mathrm{AZA}^{-1}$. From sequence F we now form the sequence G mentioned in the beginning: $Q_{1}: Q_{27}, Q_{651}, Q_{677} \ldots .$. . From the paips $Q_{1}, Q_{27} ; Q_{651}, Q_{677} ; \ldots$ we derive first $Y=B_{B B}{ }^{-1} Z^{-1}$. From this we get $B_{;}$what was said about the non-uniqueness of the solution for A holds for B.

To determine C we cannor prooed in exactiy analogous fashion. We form tae sequenoe

```
\(\mathrm{R}_{2}=\mathrm{B}^{-1} \mathrm{Q}_{1} \mathrm{~B} \quad \mathrm{CuO}^{-1}\)
```



```
\(R_{1301}=B^{-1} Q_{1301} B=z^{2}{ }_{C Z^{-2}}{ }_{U Z}{ }^{2} c^{-I_{z}}{ }^{-2}\)
```

As one readily calculates, with $V=\mathrm{OZO}^{-1} \mathrm{Z}^{-1}$

$$
\begin{aligned}
& v^{-1} R_{1} v=R_{651} \\
& v^{-1}\left(z^{-1} R_{651^{2}}\right) v=z^{-1} R_{1301^{2}} \\
& v^{-1}\left(z^{-2_{R_{1301}}} z^{2}\right) v=z^{-2} R_{1951^{2}} z^{2}
\end{aligned}
$$

From these equations ane can determine V and from that C.
Finally \mathbb{U} can be determined, e.g. from R_{1} : $\mathbf{U}=\mathrm{c}^{-1} \mathrm{I}_{2} \mathrm{C}$.
The metriod employed here to determine C can also be used to determine A and B. Camrying this out by this method calls for more computation but one can aucceed vith fewer members of a sequence, which in practical application is a great advantage.
3. Practioal calculation of the wheel virings.

As already mentioned, our sequences of ${ }^{2} 6^{13}$ oontained oniy some 50 terms. Consequently by the method given in 2. ane could at most determine the two wheels at the left (cf, Fig. 3), 1.e. A and B, and to get B it was necessary to use the methed desoribed

at the end of 2. But the sequences antioipsted did not all correspond to wheel oxder A, B, C, but also to some otherg; if, for instance, the order C BA is found, one can easily obtain the viring of 0 from one sequence belonging to this wheel oxder.

After the wipings of A, B, C, and U had been detervined, came the furtaer problem of studying the slaipping motion of the wheels in detail. The question calling for an answer was: at what position of A does B move one step? This cannot be determined from ous previous theoretical considerations atnce we have arbitraxily considered a substitution immediately after the simultaneous movement of all three wheels $(0,0,0)$. The oonsiderations which finsily led to solution of this problem were in part rather oomplex and it would lead too far afield to reproduce them here. Essential was the fact that ve knew the outer settings oorrespondIng to our sequences. Wie vas also made of the fact that the original viring of V was known or at least euspected.

In this stage of the work an Enigme with the recovered virings and the recovered drive-mechanism vas constructed with which all messages received were readily read.

This mechine probably ald not agree fully with the original for the wiringa had not been uniquely detemmined by the sequences. In oxder to absure current reading of traffic even when the imner setting was changed (the outer setting was supplied by an indiaator), it seemed desirable to see how our machine differed from the original. This was solved vary quickiy, because for setting the original a pronouncable four letter word was always chosen.

FIG. 1

FIG. 2

